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The ground-state properties of the infinite-range vector spin-glasses are studied by a ‘‘slow-cooling’
iterative solution of the mean-field equations. Results are presented for the zero-temperature probability
distribution P (H) of internal fields with and without an external magnetic field present. We also find the
ground-state energy for the XY and Heisenberg models. P(H) has a hole; i.e., P(H)=0 for H < Hy,
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which persists in high magnetic fields and relatively high temperatures, T/Tcs_? Our studies for the

infinite-range Heisenberg spin-glass appear to show macroscopic irreversibility, in contrast to the short-
range Heisenberg case which has no irreversibility. Therefore the range of interaction plays an important

role in determining the irreversible behavior.

Considerable progress has recently been made in under-
standing the nonergodic' ~* behavior of the infinite-range Is-
ing spin-glass model of Sherrington and Kirkpatrick® (SK).
However, little progress has been made in understanding
the irreversible and time-dependent effects for this model.
Theoretical studies®’ of the infinite-range, isotropic Heisen-
berg model using replica techniques find a spin-glass phase
at a well-defined transition temperature 7T.. Below T, the
replica symmetry has been shown to be broken. Though
the breaking of replica symmetry is often presumed to be
related to irreversibility and the onset of history-dependent
effects, there is presently no proof that these phenomena
are connected. It is the purpose of this paper to explore the
irreversibility and metastable properties of the infinite-
range, vector spin-glasses.

Recently, it was demonstrated®® that the mimina of the
free-energy surface as functions of temperature T and the
external field H could explain the nature of reversible and
irreversible behavior in short-range Ising and Heisenberg
spin-glasses. A very striking result® in that in an isotropic
Heisenberg spin-glass there is no irreversibility. The field-
cooled (FC) and zero-field-cooled (ZFC) states are found
to be the same, and magnetic hysteresis is absent. These
results at first sight seem to be in conflict with those of
Refs. 6 and 7, if we make the (as yet unproved) connection
between replica symmetry breaking and the onset of irrever-
sibility. However, since the calculations are for an infinite-
ranged model it is important to study the reversibility or ir-
reversibility of the long-ranged vector models.

In the present paper we study the ground-state properties
and check whether there is irreversibility in the infinite-
range vector spin-glasses. We employ iterative mean-field
theory®? to study the ground-state properties.

We calculate the N dependence of the ground-state ener-
gies for the infinite-range spin-glasses as well as the proba-
bility distributions of internal magnetic fields with and
without an external magnetic field present. We compare
our results with those of the Monte Carlo (MC) method,°
and find agreement (wherever MC results exist). However,
our method,®’ as we will discuss below, is a factor of
10-100 faster than MC. We also find that the infinite-range
Heisenberg spin-glass for N > 400 shows irreversibility
below T..

The SK model® generalized to vector spins is described by
the Hamiltonian

H=-3J5;-5,- 3h"S, (1
i i

for N classical spins S;, where h is the external magnetic
field. The summation is over all pairs (ij). The exchange
interactions (J;) are given by the Gaussian distribution

1/2
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The spins may be m-component vectors or Ising-like
(S;= *1) but, in either case, |S;|=1. A particular sample
has a fixed set J; of the N (N —1)/2 values of J; which are
chosen randomly from a Gaussian probability distribution of
zero mean and variance J¥ (N —1). We take J=1. The N
dependence of the interactions ensures a correct thermo-
dynamic limit. We have scaled J by the number of neigh-
bors N —1. In the limit N — oo one usually replaces N — 1
by N, but for the small sample studied here this difference
is noticeable.

As discussed previously®® the reaction term in the free-
energy functional F[f;], where m, is the thermal average
of the vector spin at the /th site, leads to unphysical minima
to which the system will readily flow. Here we are mainly
interested in the 7 =0 results, in which case the reaction
term vanishes. Consequently, we can consider only the
mean-field terms. A major advantage of our mean-field ap-
proach is that the metastability or variational condition
8F/8m;=0 can be solved by simple iterative techniques®’
for fixed H and T. All states so generated are minima of
the free-energy surface.*® They can be readily followed
with A and T. Because no matrix algebra is required we can
treat fairly large systems.

We solve iteratively the self-consistent equations deriving
from 8F/8mm; =0,

Y
m;=—=SBs(|al) , 3)
[l
where H,-= S, Jym; +h and Bg is the Brillouin function for
general spin S. Here we choose S =1. Convergence is as-
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sumed when

3 (), — (/) 112
i

=<10°% ,
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where the subscript n denotes the nth iteration. In most
cases we begin our numerical calculations at high T=1.5T,
where T, is the mean-field spin-glass transition temperature,
and cool in zero or finite field. The iterations at high T are
started by choosing the direction of the m; randomly. The
temperature is then decreased in small steps, typically 0.1 or
0.2J. At each temperature we could follow the solution with
decreasing T without difficulty. At each subsequent 7, the
converged values of the previous temperature were used to
start the next iteration. In this way it is assumed that the
system ‘‘follows’’ a given minimum of the energy surface as
it evolves in H and 7. As in most numerical approaches,
we take advantage of the fact that updating the f; as we
iterate leads to much more rapid convergence.

Our results for the N dependence of the ground-state en-
ergy per particle N of the infinite-range XY and Heisenberg
spin-glasses are shown in Fig. 1. These results are also
summarized in Table 1. Note that 1/~/N dependence of
E/N is well obeyed for both cases. The results for the XY
model agree with the MC results of Palmer and Pond,'® ex-
cept at very small N where the difference is significant.
This difference is due to the different normalization of J.
We normalize with N —1 while Palmer and Pond use N.
The major improvement over the earlier work is that the
‘“‘slow cooling’’ iterative solution of the mean-field equation
is considerably faster®® (by a factor of 10-100) than the
MC techniques.

It has been shown by Bray and Moore'! that the number
of metastable minima for the infinite-range spin-glass grows
very rapidly with N. For N > 200 for the XY model and
N 2> 400 for the Heisenberg model, the number of meta-
stable states is large and one should expect to have prob-
lems finding the true ground state. We found that for large
N the states that one obtains by a slow cooling MC pro-
cedure or by slowly cooling the mean-field equations are not
necessarily the lowest and therefore we have to do other
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FIG. 1. Ground-state energies plotted vs 1/\/ﬁ The solid points
are for the xy model and the solid triangles are for the Heisenberg
system. Error bars are less than the size of the points.
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TABLE 1. Ground-state energy for the infinite range XY and
Heisenberg spin-glass model. N is the number of spins and M is the
number of [J;] configurations which were averaged over.

E/N
N M XY Heisenberg
25 200 —0.755 +0.004 —0.759 +0.003
50 200 —-0.797 +0.002 —0.810 +0.002
100 100 —0.826 +0.002 —0.850 +0.002
200 50 —0.8435 +£0.002 —0.8755 £0.002
o —0.895 +0.010 —-0.940 +0.010

““tricks’’!" to obtain the global minimum. For this reason
we have calculated E/N only for N in which the number of
minima is small and where we believe we have the lowest-
energy state. The 1/~N extrapolation suggests that
(E/N)o= —0.895+0.010 for the XY case, compared with
—0.904 £0.014 that Palmer and Pond!'® give from their MC
work. Because the mean-field procedure for obtaining
ground-state energies is faster than the MC technique we
have for the first time been able to determine the N depen-
dence of the ground-state energy for the infinite-range
Heisenberg spin-glass. For the Heisenberg case we also find
that the data follow a 1/~/N dependence reasonably well.
We find (E/N)ow= —0.94 £0.01 from the 1/v/N extrapola-
tion. Not surprisingly, the energy as N — oo is appreciably
lower than the Ising model and slightly lower than the XY
model, as would be expected because of the additional de-
grees of freedom. Indeed, we expect the energy to decrease
steadily with increasing number of spin components, even-
tually reaching the spherical model'? limit (E/N)o= — 1.

In Fig. 2 we present our results for the internal-field dis-
tributions for the XY model and Heisenberg model. For a
given sample, the average internal field projected along the
direction m; is

Hi= Elur?li‘ﬁl/+ﬁ-r71, ) (5)
J

where h is the external field. The P(H) histograms of Fig.
2 for N =200 were averaged over M =100 samples for the
XY model and 50 for the Heisenberg model. Note that
these histograms are the T =0 results, where the mean-field
theory is exact. In particular, our results for the XY model
for h =0 agree very well with the MC results of Palmer and
Pond.!® As is clearly shown in Fig. 2(a) the P(H) distribu-
tion has a hole, no spins feel an internal field for H < 0.585
in agreement with Ref. 10. P(H) does not change consid-
erably even with the application of an external field of 4 = J.
The size of the hole remains essentially unchanged. The
major effect of 4 is near the maximum in P (H ), where the
introduction of 4 shifts the upper cutoff to higher H. In
Fig. 2(b) we present our results for P(H ) for the Heisen-
berg case. Results for 400 spins in the Heisenberg model
were essentially the same, with less finite size rounding at
H,, the lower limit of P(H). We know of no MC results
for the Heisenberg case with which to compare these
results. Our results are in very good agreement with earlier
theoretical calculations of P (H) for the XY and Heisenberg
spin-glasses by Bray and Moore.!* As expected, P(H) has
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FIG. 2. Histograms of the internal field distribution in an (a) XY
spin-glass and (b) Heisenberg spin-glass. The solid line indicates
results for zero external field and the dotted histogram for A =1.0 J.
Each histogram is an average of 100 samples of 200 spins for the XY
model and 50 samples for the Heisenberg model.

a hole for the Heisenberg model. The size of the hole is
H,=0.85, slightly larger than for the XY case. In the
Heisenberg case P(H) becomes sharper and the width of
P(H) at half maximum is smaller than the XY case. In this
case the width at half maximum is 0.90, which agrees favor-
ably with the theoretical result of Bray and Moore!® which
gives 0.93. For the XY case the width is 1.25 for both
theory!® and simulation. The introduction of an external
magnetic field in the Heisenberg case has exactly the same
effect as in the XY case, i.e., the size of hole remains essen-
tially unchanged but the maximum in P(H) moves to
higher H.
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In Fig. 3 we plot P(H) with h =0 for the Heisenberg
model for three temperatures.!* These results are obtained
by iteratively solving the mean-field equations for N =200
spins and averaging over M =50 configurations. Note that
the hole in the P(H) is still present even when T =0.5,
where T.=1.3 from our mean-field theory.!® It is interest-
ing that the hole in P(H) is still present even when only
the mean-field theory equations, which ignore fluctuations,
are used. Similar results are also found for the XY model.
Therefore, to obtain the hole in P(H) for the vector
infinite-range spin-glasses, one does not need the equations
of Thouless, Anderson, and Palmer.!® Of course, as tem-
perature is increased, P(H) moves to lower H as expected,
since many of the spins feel a lower internal field.

Finally, we looked very carefully for reversible and ir-
reversible effects in the infinite-range vector spin-glasses.
This is a very interesting problem to address, since our pre-
vious observations®® for the short-range Heisenberg spin-
glass® is that there is no macroscopic irreversibility. We
have systematically looked for irreversibility in the infinite-
range spin-glasses. By cooling to almost zero temperature in
the presence of a small magnetic field (A =0.1), we can cal-
culate the FC magnetization (MF€). However, by cooling
slowly from high T to very low T in the presence of zero
external field and then applying the field, we can calculate
the ZFC magnetization. For N < 200 spins there is no ir-
reversibility (MFC€=MZFC) but, for N > 400, irreversibility
(MFC = MZFC) appears to exist. We studied six different
configurations of J; for N =400, half of them showed ir-
reversible behavior and half did not. For small N
(N <200) the number of metastable states for a Heisen-
berg infinite-range spin-glass is very small (less than 5) and
the dispersion of the energies of the metastable states is also
small. Therefore, by calculating the FC and ZFC magneti-
zations for small external field (#=0.1) we always found
reversibility, i.e., MFC=MZC. As we increase the number
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FIG. 3. Histograms of the internal field distribution for a Heisen-
berg spin-glass at three different temperatures. Solid line is for
T =0.5, dashed line for T=0.7, and dotted line for T =0.9, where
T.=1.3. Each histogram is an average of 50 samples of 200 spins.
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of spins (N =400) there are enough metastable states!!
(~ 28 for H=0) and enough dispersion for the energies of
metastable states!! that we see irreversibility, MFC = MZFC,
Even in those samples which were reversible for both
N =200 and 400, the number of iterations necessary to
minima hop to the new ground state after the field is
switched on is large, usually of order 300 moves per spin.
The large number of iterations are suggestive of the fact
that the system had to make many macroscopic rearrange-
ments. Since the total number of metastable minima is still
small for N < 400, it often fell into the lowest-energy state.
For N large the system will not be able to find the lowest-
energy state and it will be irreversible. Therefore our
results for the infinite-range Heisenberg spin-glass suggest
that irreversibility exists for large N. The range of interac-
tions plays an important role in determining the characteris-
tics of irreversible processes. It seems that the barriers
between minima become larger as the range of interaction
increases and the lowest-energy state is not as accessible as
in the finite-range case.
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To conclude, we have studied the internal-field distribu-
tion with and without an external magnetic field at T =0 for
the infinite-range vector spin-glasses. The knowledge of the
internal-field distribution plays a very important part in the
understanding of the low-temperature properties of spin-
glasses. We also show that the infinite-range spin-glass
shows macroscopic irreversibility even for the Heisenberg
case, suggesting that the range of interaction plays an im-
portant role in determining the reversible behavior in spin-
glasses. Finally, we note that this work is another example
of how the slow cooling iterative solution of the mean-field
equations®® can help to obtain results for the ground-state
properties of the infinite-range vector spin-glasses, which
would require significantly more computer time to obtain
similar results with regular Monte Carlo techniques.
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